

Fig. 2. Relationships between Cl -triazine bond length and endocyclic $\mathrm{N}-\mathrm{C}-\mathrm{N}$ angle. The points shown refer to: 1 CCMT; 2 CMPT; 3 2-chloro-4-dimethylamino-6-triphenylphos-phoranylideneamino-1,3,5-triazine (Cameron, Mannan, Biddlestone \& Shaw, 1975); 4 and 5 2-(N^{\prime}-acetylhydrazino)-4,6-dichloro-1,3,5-triazine (Reck \& Jankowsky, 1981). Bars represent e.s.d.'s.

Coulson, 1975). The sensitivity of $\mathrm{N}-\mathrm{C}-\mathrm{N}$ ring angles in chloro-s-triazines to electronic effects is revealed in Fig. 2 which suggests that the $\mathrm{N}-\mathrm{C}-\mathrm{N}$ angle is positively correlated with the length of the bond from the central C atom to its chlorine substituent.

The average $\mathrm{C}-\mathrm{Cl}$ bond distance in s-triazines and benzene derivatives is the same (about $1.74 \AA$) but the reactivity of chloro-s-triazines exceeds manyfold that of chlorobenzene due to substitution of
$\mathrm{C}\left(s p^{2}\right)$ by more electronegative $\mathrm{N}\left(s p^{2}\right)$ atoms at ortho and para positions in the s-triazine ring.
The s-triazine rings of the two chlorotriazine derivatives show partial stacking in the solid: the distances between the rings are 3.84 and $3.28 \AA$ for CCMT and CMPT, respectively. Due to the conjugation between lone-pair electrons at the N atom of the piperidine moiety and the s-triazine system in CMPT, flattening of the piperidine ring at the N atom is observed and the sum of the three $\mathrm{C}-\mathrm{N}(7)-\mathrm{C}$ angles is $359 \cdot 1^{\circ}$ (Table 2).

The authors wish to thank Dr Zbigniew J. Kamiński of the Institute of Organic Chemistry, Technical University of Łódż for the compounds and the Ministry of National Education for financial support under project RP.II.10.

References

Cameron, T. S., Mannan, Kh., Biddlestone, M. \& Shaw, R. A. (1975). Z. Naturforsch. Teil B, 30, 973-974.

Domentcano, A., Vaciago, A. \& Coulson, C. A. (1975). Acta Cryst. B31, 221-234.
Johnson, C. K. (1976). ORTEP. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Kamí́ski, Z. J. (1985). Tetrahedron Lett. 26, 2901-2904.
Kamíski, Z. J. (1987). Synthesis, 917-920.
Larson, A. C. (1967). Acta Cryst. 23, 664-665.
Reck, G. \& Jankowsky, W. (1981). Cryst. Struct. Commun. 10, 111-115.
Sheldrick, G. M. (1976). SHELX76. Program for crystal structure determination. Univ. of Cambridge, England.
Sheldrick, G. M. (1986). SHELXS86. Program for crystal structure solution. Univ. of Göttingen, Germany.
Walker, N. \& Stuart, D. (1983). Acta Cryst. A39, 158-166.

Structure of the 4-Oxo-2-butenoic Acid Alkyl Ester Moiety. II. Structure of Dimethyl 4,4'-(Methylhydrazo)bis(4-oxo-2-butenoate)

By Marek L. Gıówka and Iwona Iwanicka
Institute of General Chemistry, Technical University of Łódż, Zwirki 36, 90-924 Lódż, Poland
and Liliana Najman
Department of Pharmaceutical Chemistry and Analysis of Drugs, Medical Academy, 90-145 Lóḋz, Poland

(Received 29 January 1990; accepted 31 July 1990)

Abstract. Dimethyl $\quad \mathrm{N}$-methyl-4,4'-dioxo-4,4'-hydrazo-2-butenoate, $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{6}, M_{r}=270 \cdot 24$, triclinic, $\quad P \overline{1}, \quad a=4.604$ (1),$\quad b=8.543$ (1),$\quad c=$ $16 \cdot 940$ (1) $\AA, \quad \alpha=85 \cdot 60(1), \quad \beta=89 \cdot 21$ (1), $\quad \gamma=$ $85.97(1)^{\circ}, V=662.7 \AA^{3}, Z=2, D_{x}=1.354 \mathrm{Mg} \mathrm{m}^{-3}$,
$\lambda(\mathrm{Cu} K \alpha)=1.54178 \AA, \quad \mu=0.91 \mathrm{~mm}^{-1}, \quad F(000)=$ $284, R=0.060$ for 2276 reflections. The molecules in the crystal form chains by means of $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds [$\mathrm{N} \cdots \mathrm{O}$ distance $2 \cdot 794$ (2) \AA] running in the [100] direction. The configurations at the $\mathrm{C}=\mathrm{C}$ © 1991 International Union of Crystallography
double bonds are trans and adjacent carbonyl groups are syn oriented towards the double bond. The molecule is twisted by $-83 \cdot 3(2)^{\circ}$ at the central hydrazine link.

Introduction. Diethyl 4,4'-(2-methyl-1,4-piperazine-diyl)bis(4-oxo-2-butenoate) (2) shows cytostatic activity against leukemias L1210 and P388 and sarcoma Sal 80 (Graczyk, Pakulska, Groszkowski \& Najman, 1980; Groszkowski \& Najman, 1983). This has led to the synthesis of a series of piperazides, methylpiperazides and oxopiperazides of α, β-unsaturated carboxylic acids and their esters (Groszkowski, Najman \& Sienkiewicz, 1972; Groszkowski \& Najman, 1979; Groszkowski \& Najman, 1986). The crystal structures of two 1,4piperazinediyl and 2,5-dioxo-1,4-piperazinediyl derivatives have been determined (Główka \& Iwanicka, 1990). We now present the crystal structure of the new compound (1) comprising two 4 -oxo-2-butenoic acid alkyl esters joined by a hydrazine link instead of the piperazine ring of (2).

Experimental. Transparent plate-like crystals of (1) were grown from warm water solution. A crystal of dimensions $0.30 \times 0.23 \times 0.08 \mathrm{~mm}$ was used for data collection on an Enraf-Nonius CAD-4 diffractometer. 25 reflections used for measuring lattice parameters in the range $17 \leq \theta \leq 33^{\circ}$. The intensities of 2715 unique reflections were collected to a maximum $\theta=75^{\circ}$ using $\omega / 2 \theta$ scans and a maximum measurement time of 200 s . $-5 \leq h \leq 5,-10 \leq k \leq 10,0 \leq l$

Fig. 1. A view of the molecule with the atomic labeling scheme (Johnson, 1976).

Table 1. Final positional and equivalent isotropic temperature factors for non -H atoms

$B_{\text {eq }}=\left(8 \pi^{2} / 3\right) \sum_{i} \sum_{j} U_{i j} a_{i}^{*} a_{j}{ }^{*} \mathbf{a}_{i} \cdot \mathbf{a}_{j}$.				
	x	y	z	$B_{\text {eq }}\left(\AA^{2}\right)$
$\mathrm{N}(1)$	$0 \cdot 3283$ (4)	$0 \cdot 0247$ (2)	$0 \cdot 2335$ (1)	$3 \cdot 82$ (4)
C(1)	0.4786 (7)	-0.1316 (3)	$0 \cdot 2396$ (2)	5.06 (7)
C(2)	0.3820 (5)	0.1295 (3)	0.1713 (1)	4.38 (6)
$\mathrm{O}(2)$	0.5416 (6)	0.0901 (2)	0.1178 (1)	7.39 (7)
C(3)	0.2258 (6)	0.2887 (3)	0.1704 (1)	4.51 (6)
C(4)	$0 \cdot 2855$ (6)	0.3995 (3)	$0 \cdot 1163$ (1)	4.92 (6)
C(5)	$0 \cdot 1190$ (6)	0.5560 (3)	$0 \cdot 1120$ (1)	4.86 (6)
$\mathrm{O}(5)$	-0.0668 (7)	0.5937 (3)	$0 \cdot 1580$ (1)	$8 \cdot 20$ (8)
O (6)	0.1972 (5)	0.6462 (2)	0.0501 (1)	5.88 (5)
C(7)	0.0479 (10)	0.8019 (3)	0.0403 (2)	6.48 (9)
N(11)	$0 \cdot 2058$ (3)	0.0765 (2)	$0 \cdot 3029$ (1)	3.48 (4)
C(12)	0.3713 (4)	$0 \cdot 1291$ (2)	0.3576 (1)	3.95 (5)
$\mathrm{O}(12)$	0.6267 (4)	$0 \cdot 1528$ (3)	0.3451 (2)	7.70 (8)
C(13)	0.2197 (5)	0.1634 (2)	0.4328 (1)	3.96 (5)
C(14)	0.3240 (5)	0.2556 (3)	0.4824 (2)	4.90 (6)
C(15)	$0 \cdot 1663$ (6)	$0 \cdot 2924$ (3)	$0 \cdot 5557$ (1)	4.63 (6)
$\mathrm{O}(15)$	-0.0293 (7)	$0 \cdot 2206$ (3)	0.5846 (1)	7.59 (8)
$\mathrm{O}(16)$	$0 \cdot 2572$ (5)	$0 \cdot 4191$ (2)	0.5849 (1)	$6 \cdot 10$ (6)
C(17)	$0 \cdot 1170$ (11)	0.4669 (4)	$0 \cdot 6564$ (2)	6.57 (9)

≤ 21. Three standard reflections measured every hour showed changes of intensity below 5% and the data were scaled accordingly. The data were corrected for Lorentz and polarization effects but not for absorption.
The structure was solved by direct methods (Sheldrick, 1986) and refined by full-matrix least squares (Sheldrick, 1976) with anisotropic thermal parameters for O, N and C atoms and isotropic thermal parameters for H atoms. Isotropic extinction was taken into consideration according to Larson (1967) and refined in the final cycles of calculations to 0.044 (10). 229 parameters refined in final cycles. The final agreement factors $R(w R)$ of $0.060(0.084)$ were based on 2276 reflections having $F>3 \sigma(F)$. $(\Delta / \sigma)_{\max }=0.05$ for $\mathrm{H}(101) z$. The function minimized was $\left.\sum w\left|F_{o}\right|-\left|F_{c}\right|\right)^{2}$ where $w^{-1}=\sigma^{2}\left(F_{o}\right)+$ $0.0038 F_{o}^{2}$. The maximum peak of $0.15 \mathrm{e} \AA^{-3}$ in the final difference Fourier synthesis was located $0.35 \AA$ from $\mathrm{O}(6)$ and $\Delta \rho_{\min }$ was $-0.16 \mathrm{e} \AA^{-3}$. Scattering factors were those in SHELX76.
A view of molecule and the atomic labeling scheme are shown in Fig. 1. The final atomic coordinates and equivalent isotropic temperature parameters are given in Table 1,* while bond distances, valency and torsion angles for these atoms are listed in Table 2.

Discussion. The molecule of (1) comprises two methyl 4-oxo-2-butenoate moieties joined by a methylhydrazine link. Although the two 4 -amino-4-oxo-2-butenoate fragments are in the extended form

[^0]Table 2. Bond lengths (\AA) and valency and torsion angles $\left({ }^{\circ}\right)$

$\mathrm{N}(1)-\mathrm{N}(11) \quad 1.387$	$1 \cdot 387$ (2)	$\mathrm{N}(1)-\mathrm{C}(1) \quad 1.457$	(3)
$\mathrm{N}(1)-\mathrm{C}(2) \quad 1.36$	$1 \cdot 361$ (3)	$\mathrm{N}(11)-\mathrm{C}(12) \quad 1.331$	(2)
$\mathrm{C}(2)-\mathrm{O}(2) \quad 1.212$	$1 \cdot 212$ (3)	$\mathrm{C}(12)-\mathrm{O}(12) \quad 1.220$	20 (3)
$\mathrm{C}(2)-\mathrm{C}(3) \quad 1.49$	1.492 (3)	$\mathrm{C}(12)-\mathrm{C}(13) \quad 1.483$	(3)
$\mathrm{C}(3)-\mathrm{C}(4) \quad 1.307$	$1 \cdot 307$ (3)	$\mathrm{C}(13)-\mathrm{C}(14) \quad 1.313$	3 (4)
$\mathrm{C}(4)-\mathrm{C}(5) \quad 1.4$	1.491 (4)	$\mathrm{C}(14)-\mathrm{C}(15) \quad 1.473$	(4)
$\mathrm{C}(5)-\mathrm{O}(5) \quad 1 \cdot 193$	$1 \cdot 193$ (3)	$\mathrm{C}(15)-\mathrm{O}(15) \quad 1.203$	(3)
$\mathrm{C}(5)-\mathrm{O}(6) \quad 1.314$	$1 \cdot 314$ (3)	$\mathrm{C}(15)-\mathrm{O}(16) \quad 1.320$	20 (3)
$\mathrm{O}(6)-\mathrm{C}(7) \quad 1.4$	1.453 (3)	$\mathrm{O}(16)-\mathrm{C}(17) \quad 1.438$	(4)
$\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{C}(2)$	120.5 (2)	$\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{N}(11) \quad 1$	116.2 (2)
$\mathrm{N}(11)-\mathrm{N}(1)-\mathrm{C}(2)$	$120 \cdot 3$ (2)	$\mathrm{N}(1)-\mathrm{N}(11)-\mathrm{C}(12)$	120.7 (2)
$\mathrm{N}(1)-\mathrm{C}(2)-\mathrm{O}(2)$	120.1 (2)	$\mathrm{N}(11)-\mathrm{C}(12)-\mathrm{O}(12)$	121.9 (2)
$\mathrm{N}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	117.4 (2)	$\mathrm{N}(11)-\mathrm{C}(12)-\mathrm{C}(13)$	115.3 (2)
$\mathrm{O}(2)-\mathrm{C}(2)-\mathrm{C}(3)$	122.5 (2)	$\mathrm{O}(12)-\mathrm{C}(12)-\mathrm{C}(13)$	$122 \cdot 8$ (2)
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	120.7 (2)	$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)$	$122 \cdot 1$ (2)
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	121.1 (2)	$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(15)$	121.4 (2)
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{O}(5)$	$124 \cdot 3$ (2)	$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{O}(15)$	124.9 (2)
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{O}(6)$	111.6 (2)	$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{O}(16) 1$	111.8 (2)
$\mathrm{O}(5)-\mathrm{C}(5)-\mathrm{O}(6)$	124-1 (2)	$\mathrm{O}(15)-\mathrm{C}(15)-\mathrm{O}(16)$	123.3 (2)
$\mathrm{C}(5)-\mathrm{O}(6)-\mathrm{C}(7)$	$116 \cdot 1$ (2)	$\mathrm{C}(15)-\mathrm{O}(16)-\mathrm{C}(17) \quad 1$	116.7 (2)
$\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{C}(2)-\mathrm{O}(2)$	(2) $\quad 4.7(3)$	$\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{N}(11)-\mathrm{C}(12)$	77.3 (2)
$\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	-178.3 (2)	$\mathrm{C}(2)-\mathrm{N}(1)-\mathrm{N}(11)-\mathrm{C}(12)$	-83.3 (2)
$\mathrm{N}(11)-\mathrm{N}(1)-\mathrm{C}(2)-\mathrm{O}(2)$	(2) $\quad 164.6$ (2)	$\mathrm{N}(1)-\mathrm{N}(11)-\mathrm{C}(12)-\mathrm{O}(12)$	9.5 (3)
$\mathrm{N}(11)-\mathrm{N}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	(3) $\quad-18.5$ (3)	$\mathrm{N}(1)-\mathrm{N}(11)-\mathrm{C}(12)-\mathrm{C}(13)$	-173.2 (2)
$\mathrm{N}(1)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	(4) $\quad 174.0$ (2)	$\mathrm{N}(11)-\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)$	(4) $-160 \cdot 1(2)$
$\mathrm{O}(2)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	-9.1(4)	$\mathrm{O}(12)-\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)$	17.1 (3)
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$) 176.4 (2)	$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(15)$	(5) 178.1 (2)
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{O}(5)$	5) $\quad 3.3$ (4)	$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{O}(15)$	(5) $\quad 16.0$ (4)
C(3)-C(4)-C(5)-O(6)	-175.2 (2)	$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{O}(16)$	(6) -161.4 (2)
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{O}(6)-\mathrm{C}(7)$	-180.0 (2)	$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{O}(16)-\mathrm{C}(17)$	7) $\quad 179.6$ (2)
$\mathrm{O}(5)-\mathrm{C}(5)-\mathrm{O}(6)-\mathrm{C}(7)$) 1.6 (4)	$\mathrm{O}(15)-\mathrm{C}(15)-\mathrm{O}(16)-\mathrm{C}(17)$	7) $\quad 2 \cdot 2(4)$

the whole molecule is bent at the central $\mathrm{N}-\mathrm{N}$ bond $\left[\mathrm{C}(2)-\mathrm{N}(1)-\mathrm{N}(11)-\mathrm{C}(12)=-83 \cdot 3(2)^{\circ}\right]$. The configurations at the $\mathrm{C}(3)=\mathrm{C}(4)$ and $\mathrm{C}(13)=\mathrm{C}(14)$ bonds are trans and all four carbonyl groups are syn in relation to the double $\mathrm{C}=\mathrm{C}$ bonds. Similar geometries have been observed in the crystal structures of funaltrexamines (Griffin, Larson \& Porthoghese, 1986) and in dimethyl 4,4'-(2,5-dioxo-1,4-piperazinediyl)bis(4-oxo-2-butenoate) (Główka \&

Ìwanicka, 1990). The bond lengths and angles in the two equivalent 4 -oxo-2-butenoate moieties agree to within 3σ except for $\mathrm{N}(1)-\mathrm{C}(2), \mathrm{N}(1)-\mathrm{C}(2)-\mathrm{O}(2)$, $\mathrm{N}(1)-\mathrm{C}(2)-\mathrm{C}(3)$ and $\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$ (Table 2) which differ by about 10σ. These differences result from methyl substitution at $\mathrm{N}(1)$, from different crystallographic environments of the moieties and from $\mathrm{N}(11)-\mathrm{H} \cdots \mathrm{O}(12)(x-1, y, z)$ hydrogen bonds which join molecules of (1) into infinite chains running in the [100] direction. $\mathrm{N} \cdots \mathrm{O}, \mathrm{H} \cdots \mathrm{O}$ distances and the $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ angle are 2.796 (2), 2.07 (3) \AA and 147 (3) ${ }^{\circ}$, respectively.

The authors wish to thank the Polish Ministry of National Education (research project RP.II.10) for financial support.

References

Gıówka, M. L. \& Iwanicka, I. (1990). Acta Cryst. C46, 1262-1264.
Graczyk, J., Pakulska, W., Groszkowski, S. \& Naman, L. (1980). Acta Pol. Pharm. 37, 249-254.

Griffin, J. F., Larson, D. L. \& Porthoghese, P. S. (1986). J. Med. Chem. 29, 778-783.
Groszkowski, S. \& Nasman, L. (1979). Pol. J. Pharmacol. Pharm. 31, 157-159.
Groszkowski, S. \& Najman, L. (1983). Pol. J. Pharmacol. Pharm. 35, 517-521.
Groszkowski, S. \& Najman, L. (1986). Acta Pol. Pharm. 43, 327-330.
Groszkowski, S., Najman, L. \& Sienkiewicz, J. (1972). Rocz. Chem. 46, 269-273.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Larson, A. C. (1967). Acta Cryst. 23, 664-665.
Sheldrick, G. M. (1976). SHELX76. Program for crystal structure determination. Univ. of Cambridge, England.
Sheldrick, G. M. (1986). SHELXS86. Program for the solution of crystal structures. Univ. of Göttingen, Germany.

Acta Cryst. (1991). C47, 620-623

Structure of 8-Chloro-6-(2-chlorophenyl)-2H,4H-[1,2,3]triazolo[5,4-d][2]benzazepinium Methanesulfonate Methanol Solvate*

By Helen J. Kemmish and Thomas A. Hamor
Department of Chemistry, University of Birmingham, Birmingham B15 2TT, England

(Received 8 January 1990; accepted 2 July 1990)

Abstract

C}_{16} \mathrm{H}_{11} \mathrm{Cl}_{2} \mathrm{~N}_{4}\right]^{+} .\left[\mathrm{CH}_{3} \mathrm{O}_{3} \mathrm{~S}\right]^{-} .0 \cdot 25 \mathrm{CH}_{4} \mathrm{O}, M_{r}\) $=433 \cdot 3$, monoclinic, $\quad C 2 / c, \quad a=23 \cdot 234$ (5), $\quad b=$

[^1]0108-2701/91/030620-04\$03.00

[^2]
[^0]: * Lists of H -atom coordinates, anisotropic thermal parameters for non- H atoms and structure factors have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 53379 (12 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

[^1]: * Contribution from the Crystallography Unit, Universities of Aston and Birmingham, England.

[^2]: 10.624 (2), $\quad c=16.552(6) \AA, \quad \beta=100.95(4)^{\circ}, \quad V=$ $4011 \AA^{3}, \quad Z=8, \quad D_{x}=1.435 \mathrm{~g} \mathrm{~cm}^{-3}, \quad \lambda($ Mo $K \alpha)=$ $0.71069 \AA, \quad \mu=4.42 \mathrm{~cm}^{-1}, \quad F(000)=1780, \quad T=$ $293 \mathrm{~K}, R=0.041$ for 2340 observed reflections. The benzazepine N atom is protonated, causing a signifi(C) 1991 International Union of Crystallography

